

Open Source Firmware Testing at Facebook
If you don’t test your firmware, your firmware fails you

Andrea Barberio (barberio@fb.com)
Production Engineer, Facebook

Marco Guerri, (marcoguerri@fb.com)
Production Engineer, Facebook

OSF

Hi everyone, my name is Andrea Barberio, I am a Production Engineer at Facebook, where I have been for the past five years. I currently work on open source firmware. And here is my colleague Marco <Marco to add intro here>

Today we will talk about how we are testing open source firmware at Facebook

Problem statement
Requirements
Solution
Architecture
Agenda

OPEN SYSTEM FIRMWARE

We will cover the problem statement, then we will talk about what our requirements are to test open source firmware internally.
Then we will discuss the solution that we are pursuing, then Marco will guide you through the architecture of our testing system.

We run OSF in production[1]
Development happens upstream (GitHub, Gerrit)
Process:
develop
build
integration and end-to-end tests
review
release
debug
[1] https://engineering.fb.com/data-center-engineering/f16-minipack/
Problem statement

OPEN SYSTEM FIRMWARE

Let’s start from the problem statement.
We currently run Open System Firmware in production, as you can read in the link at the bottom of this slide about our F16/Minipack platform.
We are treating firmware as software, using an iterative development approach as you can see from the bullet points.
Today we will focus on the “integration and end to end tests” part.

Development timeline

OPEN SYSTEM FIRMWARE
Code
Change

Build/Unit
Tests
Integ/e2e
Tests
Code
Review
Merge

For OSF, our development timeline is split in two parts, an external one and an internal one
The external one looks like this:
you make a code change, build it and run unit tests, then run integration and end to end tests
then put it up for review, where a human will review it, and if everything goes well it is merged

Development timeline

OPEN SYSTEM FIRMWARE
Code
Change

Build/Unit
Tests
Integ/e2e
Tests
Code
Review
Merge
Import
Build/Unit
Tests
Integ/e2e
Tests
Release
Candidate
Canary
Release

The internal process is similar, and looks like what shown at the bottom of this slide:
after it is merged, we import the public code to our internal repositories
then we test them as above, and if everything looks good we cut a release candidate
the release candidate runs on a limited number of selected hosts as part of a canary deployment
and if everything looks good, this becomes a new release

Pretty obvious with software. But firmware?
Bugs can brick many devices. Reduced capacity
Rolling out firmware takes longer than software
Firmware influences the machine’s behaviour and performances
Why testing firmware?

OPEN SYSTEM FIRMWARE

So.. why do we need to test our open source firmware at all?
With software it’s pretty obvious, and since we treat firmware as software, why shouldn’t it be obvious here too?
System firmware is one of the most fundamental pieces of code that runs on our hardware.
As such, any bug can have a significant impact on performance, security and reliability, so we need to make sure that none of these ever become an issue.
At scale everything is amplified, and even small issues can have a large impact on our operations.
Hence we need a robust testing story

We want a firmware testing system that is
Robust: minimize failures in prod, detect errors early
Generic: can work in any infrastructure
Scalable: can run at datacenter scale
Simple by design: easier to reason with, and to understand
Flexible: assembled from independent components
Requirements (1/2)

OPEN SYSTEM FIRMWARE

In order to test our firmware properly, we had to lay down a set of requirements first. We wanted it to be:
robust, to minimize failures in prod and detecting errors early
generic, so that it can run in different infrastructures, from a home lab to Facebook’s datacenter infrastructure. This is important to simplify upstream testing
scalable: it has to deal with a large number of devices under test
simple by design, so that everyone can easily approach it and be productive as a user and as a developer
flexible: we want a simple design with reusable blocks that can be combined to implement different operations

Easy to set up and maintain: single binary, simple DB
Easy to use: configuration, not code
Open-source first: together is better!
Working with OSF, but not limited to them
Requirements (2/2)

OPEN SYSTEM FIRMWARE

We also wanted such testing system to be easy to set up and maintain. Possibly as compact as having a single binary for the server side.
It has to be easy to use, so that our users can focus on the business logic rather than the code. For this, we want jobs and test steps to be expressed with configuration files instead of code.
Of course we want this to be open source, so everyone can benefit from our work, and can integrate it in their system testing infrastructure.
And of course it must work with OSF, which is the primary goal for this testing system.

We looked at several existing systems
Difficult to meet all the requirements. Mainly:
hard to set up
hard to maintain
complex to use
DUT-only test cases
too scoped functionalities
What about existing systems?

OPEN SYSTEM FIRMWARE

We looked for existing testing systems, but none of them covered all of our requirements:
some systems were less flexible than we desired
some systems were more complex to maintain and keep up to date than we wanted
some systems had an architecture that would not work in our datacenter environment
some systems had a model where tests would be entirely offloaded to the DUT, leaving no space for external orchestration

Continuous and on-demand integration and e2e Testing
Single binary plus SQL database
Written in pure Go for ease and memory safety
Can do more than firmware testing
https://github.com/facebookincubator/contest
Enter ConTest

OPEN SYSTEM FIRMWARE

For all of the reasons I just discussed, we decided to go with a new system to help us with automating this task, and called it ConTest, a short for Continuous Testing.
It has a client-server architecture with a simple API. It’s entirely contained in a single binary, plus an SQL database, so it can be easily deployed, and we even offer a dockerfile to simplify this process.
It’s written in pure Go, a language that we found to be very easy to learn and use and that provides some strong safety guarantees.
It’s also the language used for u-root, so the LinuxBoot community will be already familiar with it.
Since one of our goals was to make it generic, it can do more beyond firmware testing.
You can find out more information at the link provided in the slide.

{
 “JobName”: “My test job”,
 “Runs”: 3,
 “Tags”: [“firmware”, “ocp”, “minipack”],
 “TestDescriptors”: {
 ...
 },
 “Reporting”: {
 …
 }
}
Job Descriptor

OPEN SYSTEM FIRMWARE

Let’s see how to describe a job with ConTest.

This is a snippet of a job descriptor, a piece of JSON that contains all the information we need to start a test job.
As you can see, you can define a job name, how many times it will run, how much time to wait between each run if more than one.
Then there are two sections with an ellipsis, Test Descriptors, and Reporting, that I’ll expand in the next slides.

“TargetManagerName”: “URI”,
“TargetManagerAcquireParameters”: {
 “URI”: “https://example.org/targetmanagers/my-test.json”,
},
“TestFetcherName”: “literal”,
“TestFetcherParameters”: {
 “Steps”: [
 {“Name”: “sshcmd”, “host”: “jump.example.org”, “executable”: “ls”},
 {“Name”: “sshcmd”, “host”: “jump.example.org”, “executable”: “flashrom”},
]
}
Test descriptors

OPEN SYSTEM FIRMWARE

A test descriptor defines the necessary information to run a test.
We need to know how to retrieve the list of devices under test, and what exact steps we want to run on them.
ConTest is heavily modular, and all of these operations are implemented by plugins: as you can see we need a target manager plugin, and a test fetcher plugin.
They are identified by their name, and are parametrized. In the example, the target manager is called URI, and it receives an HTTP URL as parameter.
The URI plugin will download the content pointed by that URL, which contains the list of devices under test by name and ID.
Similarly, the test fetcher defines how to retrieve the test steps. They can be either specified in-line or can be downloaded from a central repository.
In the example you can see two steps, that will execute two commands via SSH, sequentially, on each DUT, using jump.example.org as jump host.

“Reporting”: {
 “RunReporters”: {
 {
 “Name”: “TargetSuccess”, “Parameters”: {“SuccessExpression”: “>=95%” },
 }
 },
 “FinalReporters”: {
 {
 “Name”: “AverageTime”, “Parameters”: { },
 “Name”: “Outliers”, “Parameters”: {“start”: “RebootStart”, “end”: “RebootEnd”},
 }
 }
}
Reporting

OPEN SYSTEM FIRMWARE

Reporting is the final phase of a test.
It collects the results of the tests, and reports them where we desire, for example via e-mail, instant message, task. Other methods can be implemented as plugins.
Reporting is also modular, and just like the test fetchers you need a plugin name and pass some parameters to it.
There are two types of reporters, run reporters, and final reporters. Run reporters are executed at the end of each test run, with the data of the individual run. Final reporters are run at the end of the whole job, for example a job that runs the same test ten times. The final report will have access to the results of all the runs in the job.
There can be more than one run reports and final reports: for example you may want to report that at least 90% of your DUTs finished successfully, and also report whether there were performance regressions. Multiple reporters can help you do that.
Marco is now going to give you more details about the architecture of ConTest.

Architecture - Overview

OPEN SYSTEM FIRMWARE

Listener (HTTPS, Thrift, gRPC)
Target
Manager
TestRunner
TestStep1
TestStep2
TestStep3
API
Pluggable logic
User submits job request with a
Job Descriptor
(JSON)
TestFetcher
Events
Storage

Core framework
Reporter(s)
TargetLocking
Job API
JobManager
ConTest instance acquires ownership of targets

Fetch a description of the test steps and associated
parameters.

Based on the description of
the test, a pipeline is setup.
The TestRunner orchestrates the flow of Targets through the various steps.
A reporter(s) are invoked to
generate custom description(s) of the outcome of the test.

Architecture - Test Runner

OPEN SYSTEM FIRMWARE
TestStep
Control
Block

Err
Event
T
T
In
Out
T
TestStep
Control
Block

Err
Event
T
T
In
Out
T
The TestRunner controls the flow of Targets through the TestSteps.

A ControlBlock is associated to each TestStep to monitor the behavior of the plugin:
Records success or failure of a Target via out and err channels
Records Targets ingress and egress timestamps
Enforces that targets fed to the TestStep must be returned in output
Enforces that targets fed in input must be accepted with a timeout

Interfaces and plugins

OPEN SYSTEM FIRMWARE
Plugins must implement interfaces and meet requirements for I/O on channels, return values, timeouts, etc.
ConTest enforces that a job is terminated when a
plugin does not comply with the requirements
Interfaces are designed to allow for early validation of parameters
Components are easily swappable, integration
tests can use custom components that validate
the logic of the framework

<<interface>>
ValidateParameters(...) error
[...]

Call to Action
Get involved! https://github.com/facebookincubator/contest
Try it in your own infrastructure, or even at home
Help us set up a public testing infrastructure
Report bugs, implement new plugins, or suggest improvements

Open System Firmware:
https://www.opencompute.org/projects/open-system-firmware
https://ocp-all.groups.io/g/OCP-OSF

Contact us:
Andrea Barberio <barberio@fb.com>
Marco Guerri <marcoguerri@fb.com>

image1.png

image6.png

image5.png

image2.png

image3.png

