Agenda

- Open source initiatives
- Problem statement
- How we're using LinuxBoot at Facebook
- systemboot and provisioning
- Collaborations and partnerships
Open Source @ Facebook

• Facebook promotes open source
 • Systems Software: Kernel, CentOS, chef, systemd, etc.
 • Hardware: Open Compute Project, Telecom Infrastructure Project
 • Lots more: https://github.com/facebook and https://github.com/facebookincubator
...but there is a missing piece

Any guesses?
Open Source Firmware @ Facebook

OpenBMC initially released in 2015 and is quickly becoming standard on OCP hardware

System firmware is the next logical step
Why open source firmware?
Open Source Firmware @ Facebook

Scoping out the problem
That's a lot of servers

(and switches, too!)
...and we're not just working on datacenters.
Booting is hard

- Ever-increasing amount of hardware
 - Many local/removable storage media and networking devices
 - Complex setup, complex protocols
- Firmware has become an operating system
- More demands for firmware security
 - Verified/secure boot, measured/trusted boot, attestation
 - Secure network protocols, crypto
- Provisioning is hard
Problems with closed firmware

- Archaic, complex, often quite buggy
 - Even open firmwares are often unfamiliar and difficult to extend
- Reactive instead of Proactive debugging
- Hard to maintain, can't forward/backport features and fixes
- Vendor-specific tools
- "Dimensions" of supporting firmware at scale
 - Robustness, flexibility, debugging, build and deployment...
Sustaining Operations

- Firmware has impact across product lifecycle
 - Design, build, test, deploy, sustain, decommission
- What we want:
 - Support many generations of equipment
 - Feature parity
 - Unified, adaptable toolkit
 - Must support many different use cases
 - Familiar / low barrier to entry
How we're addressing the problem

- Coreboot: Silicon initialization
- LinuxBoot: Boot ROM
- Boot kernel + initramfs
- Target kernel loaded via network/cloud
- Target kernel loaded via local or removable storage
Why LinuxBoot

- We use Linux... a lot
- Production-quality drivers, networking, crypto
- Versatility
 - Can be used on anything that is intended to run Linux.
- We have engineering teams who understand Linux very well
 - Leverage talent we already have
- General goodness that open source brings
 - Auditability, portability, modern development, collaboration, ...
Why LinuxBoot (cont'd)

• LinuxBoot enables us to...
 • Simplify sustaining operations
 • Maximize code reuse
 • Share tools across all products
 • Apply processes and best practices uniformly
 • Have higher eyeball-to-code ratio
Current projects

- Supporting coreboot + LinuxBoot on a few projects
- Open Cellular:
 - Rotundu, based on Intel Atom E38xx
 - Elgon, based on Cavium CN81xx (ARM64)
- Open Compute Project:
 - Mono Lake, based on Broadwell-DE
 - Wedge 100S, based on Broadwell-DE
- Our LinuxBoot distribution uses u-root with systemboot
 - Our infrastructure provisioning system also uses u-root
 - Same team can support both pre- and post-boot phases
OS provisioning
OS provisioning

- Installing an OS on a single machine is simple
- Installing an OS at scale is complex
 - Lots of moving parts
 - Network booting introduces noise

- Provisioning flow:
 - Power on
 - DHCPv6 (firmware)
 - TFTP (firmware)
 - installer starts
Boot process issues

- DHCP implementations can have bugs
- TFTP implementations can have bugs
- Different firmwares can have different implementations and bugs
- At scale, a small fraction of errors can be a lot of operations

What we need
- reliable clients
- better protocols
- control the implementation: know what you run, fix it, improve it
LinuxBoot in provisioning

- LinuxBoot can simplify provisioning a lot
 - Tested DHCP or TFTP implementations
 - HTTPS instead of TFTP
 - We can run consistent firmware versions everywhere
 - We know and control the firmware that we run

- We expect to largely reduce netboot failures in provisioning with this approach

- Open means: Auditability, debuggability, security model, portability, modern development, collaboration
LinuxBoot as OS installer

- LinuxBoot is not just for firmwares
- Its components can be successfully used as a bootloader or an OS installer
 - We want to boot the infra with the same code that provisions our infra
- Facebook is experimenting systemboot as:
 - Local bootloader and installer: ProvLauncher
 - Network installer: YARD
systemboot
systemboot
A bootloader distribution based on u-root

- systemboot is a "distro" that implements a bootloader
 - Based on u-root, that we are contributors of
 - Written entirely in Go
 - Provides tools for different boot scenarios

- The goal is to create components that we can iterate fast on
 - Generic and stable ones will be contributed back to u-root
systemboot – what's inside?

- **netboot**: boot a kernel over the network using DHCPv6 or SLAAC, HTTP(s), and kexec
- **localboot**: boot a kernel from disk, using Grub/Grub2 config or direct device/kernel lookup
- **LinuxBoot VPD**: non-volatile variables storage
- **Booters interface**: a way to define something that can boot
- High level **TPM library**, and userspace utility **TPMTool**
- **uinit**: wrap all of the above in an executable to run at boot time
netboot

- Used to boot a device over the network
- Three phases
 - Acquire network configuration: DHCPv6, SLAAC (DHCPv4 coming soon)
 - Download a kernel image via HTTP or HTTPS
 - Example: DHCPv6 can give us an URL to download the kernel from
 - kexec into the kernel, using the specified command-line arguments
localboot

- Similar to netboot, but used to boot a local kernel
- Phases
 - Scan for local disks
 - Find a grub/grub2 config in a suitable location
 - Find kernel, cmdline and initramfs config
 - Kexec into kernel with the above info
- Alternatively can use boot variables for kernel/ramfs/cmdline
VPD library

- Vital Product Data
- Key-value store on the flash chip
- Based on ChromeOS's VPD format
- Used for non-volatile storage, similar to UEFI variables
 - We use it to store boot configuration (netboot and localboot config)
 - Can be extended to other uses
 - If you don't like VPD, can be easily swapped out
Boot order

- Boot order is stored in VPD variables
- Value in JSON format. Example:
 - **Boot0000**=
    ```json
    {
    "type": "netboot",
    "method": "dhcpv6",
    "mac": "00:fa:ce:b0:0c:00"
    }
    ```
 - **Boot0001**=
    ```json
    {
    "type": "localboot",
    "method": "grub"
    }
    ```
 - **Boot0002**=
    ```json
    {
    "type": "localboot",
    "kernel": "/path/to/kernel",
    "device_guid": "....",
    "device_guid": "....",
    }
    ```
Booters interface

• A generic interface to create new booters
 • netboot and localboot are based on it
 • New booters can implement it
 • You can implement higher level policies, e.g. recovery from failed boot
• Very simple
 • define TypeName() and Boot() methods
 • Define JSON format by extending the generic booter JSON
 • Register the booter, and systemboot will pick it up
TPM library and TPMTool

- High-level TPM library
 - Goal: simplify the use of the TPM
 - Based on Google's go-tpm
 - Parts of it have been merged in go-tpm
 - Can show info, take and clear TPM ownership, seal/unseal, dump PCRs, pre-calculate hashes, dump TPM event log, and more

- TPMTool
 - High-level userspace utility for TPM
 - Written by Philipp Deppenwiese / 9elements CyberSecurity
 - See tpmtool.org
Systemboot: how does it look like?

```
Systemboot
```

(demo time)
Future work

- Implement different security models:
 - Boot configurations (almost completed)
 - Boot EFI binaries (partially implemented)
 - Measured boot
 - Verified boot
Bringing it all together
Open Source Firmware@FB

• Improving while simplifying our boot flow
• Enabling collaboration inside and outside of Facebook
 • Industry initiatives such as OCP and TIP
• Opening up firmware to be more inclusive
 • Turning our Linux engineers into firmware engineers
Thanks!

Questions?

Additional resources:
• tpmtool.org
• u-root.tk
• systemboot.org
• linuxboot.org
• opencompute.org
• telecominfraproject.com