
Open Source Firmware @ Facebook

David Hendricks: Firmware Engineer
Andrea Barberio: Production Engineer



• Open source initiatives

• Problem statement

• How we're using LinuxBoot at Facebook

• systemboot and provisioning

• Collaborations and partnerships

Agenda



• Facebook promotes open source

• Systems Software: Kernel, CentOS, chef, systemd, etc.

• Hardware: Open Compute Project, Telecom Infrastructure Project

• Lots more: https://github.com/facebook and https://github.com/facebookincubator

Open Source @ Facebook

https://github.com/facebook​
https://github.com/facebookincubator


Any guesses?

...but there is a missing piece



Open Source Firmware @ Facebook

OpenBMC initially released in 2015 and is quickly 

becoming standard on OCP hardware

System firmware is the next logical step



Why open source firmware?



Scoping out the problem

Open Source Firmware @ Facebook



That's a lot of servers
(and switches, too!)



...and we're not just working 

on datacenters.



• Ever-increasing amount of hardware

• Many local/removable storage media and networking devices

• Complex setup, complex protocols

• Firmware has become an operating system

• More demands for firmware security

• Verified/secure boot, measured/trusted boot, attestation

• Secure network protocols, crypto

• Provisioning is hard

Booting is hard



• Archaic, complex, often quite buggy

• Even open firmwares are often unfamiliar and difficult to extend

• Reactive instead of Proactive debugging

• Hard to maintain, can't forward/backport features and fixes

• Vendor-specific tools

• "Dimensions" of supporting firmware at scale

• Robustness, flexibility, debugging, build and deployment...

Problems with closed firmware



• Firmware has impact across product lifecycle

• Design, build, test, deploy, sustain, decommission

• What we want:

• Support many generations of equipment

• Feature parity

• Unified, adaptable toolkit

• Must support many different use cases

• Familiar / low barrier to entry

Sustaining Operations



How we're addressing the problem



• We use Linux... a lot

• Production-quality drivers, networking, crypto

• Versatility

• Can be used on anything that is intended to run Linux.

• We have engineering teams who understand Linux very well

• Leverage talent we already have

• General goodness that open source brings

• Auditability, portability, modern development, collaboration, ...

Why LinuxBoot



• LinuxBoot enables us to...

• Simplify sustaining operations

• Maximize code reuse

• Share tools across all products

• Apply processes and best practices uniformly

• Have higher eyeball-to-code ratio

Why LinuxBoot (cont'd)



• Supporting coreboot + LinuxBoot on a few projects
• Open Cellular:

• Rotundu, based on Intel Atom E38xx

Elgon, based on Cavium CN81xx (ARM64)
• Open Compute Project:

• Mono Lake, based on Broadwell-DE

• Wedge 100S, based on Broadwell-DE

• Our LinuxBoot distribution uses u-root with systemboot

• Our infrastructure provisioning system also uses u-root

• Same team can support both pre- and post- boot phases

Current projects



OS provisioning



• Installing an OS on a single machine is simple

• Installing an OS at scale is complex

• Lots of moving parts

• Network booting introduces noise

• Provisioning flow:

• Power on

• DHCPv6 (firmware)

• TFTP (firmware)

• installer starts

OS provisioning



• DHCP implementations can have bugs
• TFTP implementations can have bugs
• Different firmwares can have different implementations and bugs
• At scale, a small fraction of errors can be a lot of operations

• What we need

• reliable clients

• better protocols

• control the implementation: know what you run, fix it, 
improve it

Boot process issues



• LinuxBoot can simplify provisioning a lot

• Tested DHCP or TFTP implementations

• HTTPS instead of TFTP

• We can run consistent firmware versions everywhere

• We know and control the firmware that we run

• We expect to largely reduce netboot failures in provisioning with this 
approach

• Open means: Auditability, debuggability, security model, portability, 
modern development, collaboration

LinuxBoot in provisioning



• LinuxBoot is not just for firmwares

• Its components can be successfully used as a bootloader or an OS 

installer

• We want to boot the infra with the same code that provisions our infra

• Facebook is experimenting systemboot as:

• Local bootloader and installer: ProvLauncher

• Network installer: YARD

LinuxBoot as OS installer



systemboot



• systemboot is a "distro" that implements a bootloader

• Based on u-root, that we are contributors of

• Written entirely in Go

• Provides tools for different boot scenarios

• The goal is to create components that we can iterate fast on

• Generic and stable ones will be contributed back to u-root

A bootloader distribution based on u-root

systemboot



• netboot: boot a kernel over the network using DHCPv6 or SLAAC, 

HTTP(s), and kexec

• localboot: boot a kernel from disk, using Grub/Grub2 config or 

direct device/kernel lookup

• LinuxBoot VPD: non-volatile variables storage

• Booters interface: a way to define something that can boot

• High level TPM library, and userspace utility TPMTool

• uinit: wrap all of the above in an executable to run at boot time

systemboot – what's inside?



• Used to boot a device over the network

• Three phases

• Acquire network configuration: DHCPv6, SLAAC (DHCPv4 coming soon)

• Download a kernel image via HTTP or HTTPS

• Example: DHCPv6 can give us an URL to download the kernel from

• kexec into the kernel, using the specified command-line arguments

netboot



• Similar to netboot, but used to boot a local kernel

• Phases

• Scan for local disks

• Find a grub/grub2 config in a suitable location

• Find kernel, cmdline and initramfs config

• Kexec into kernel with the above info

• Alternatively can use boot variables for kernel/ramfs/cmdline

localboot



• Vital Product Data

• Key-value store on the flash chip

• Based on ChromeOS's VPD format

• Used for non-volatile storage, similar to UEFI variables

• We use it to store boot configuration (netboot and localboot config)

• Can be extended to other uses

• If you don't like VPD, can be easily swapped out

VPD library



• Boot order is stored in VPD variables

• Value in JSON format. Example:

• Boot0000={

"type":"netboot",

"method":"dhcpv6",

"mac":"00:fa:ce:b0:0c:00"

}

Boot order

• Boot0001={

"type": "localboot",

"method": "grub"

}

• Boot0002={

"type": "localboot",

"kernel": "/path/to/kernel",

"device_guid": "….",

}



• A generic interface to create new booters

• netboot and localboot are based on it

• New booters can implement it

• You can implement higher level policies, e.g. recovery from failed boot

• Very simple

• define TypeName() and Boot() methods

• Define JSON format by extending the generic booter JSON

• Register the booter, and systemboot will pick it up

Booters interface



• High-level TPM library

• Goal: simplify the use of the TPM

• Based on Google's go-tpm

• Parts of it have been merged in go-tpm

• Can show info, take and clear TPM ownership, seal/unseal, dump PCRs, 

pre-calculate hashes, dump TPM event log, and more

• TPMTool

• High-level userspace utility for TPM

• Written by Philipp Deppenwiese / 9elements CyberSecurity

• See tpmtool.org

TPM library and TPMTool



Systemboot: how does it look like?

(demo time)



• Implement different security models:

• Boot configurations (almost completed)

• Boot EFI binaries (partially implemented)

• Measured boot

• Verified boot

Future work



Bringing it all together



• Improving while simplifying our boot flow

• Enabling collaboration inside and outside of Facebook

• Industry initiatives such as OCP and TIP

• Opening up firmware to be more inclusive

• Turning our Linux engineers into firmware engineers

Open Source Firmware@FB



Additional resources:
• tpmtool.org

u-root.tk
• systemboot.org

Thanks!

Questions?

• linuxboot.org
• opencompute.org
• telecominfraproject.com


