Open Source Firmware @ Facebook

David Hendricks: Firmware Engineer
Andrea Barberio: Production Engineer

* Open source initiatives
* Problem statement
Agenda * How we're using LinuxBoot at Facebook
* systemboot and provisioning
* Collaborations and partnerships

Open Source @ Facebook

* Facebook promotes open source

* Systems Software: Kernel, CentQOS, chef, systemd, etc.
* Hardware: Open Compute Project, Telecom Infrastructure Project

* Lots more: https://github.com/facebook and https://github.com/facebookincubator

Compute Project

i - OPEN @ TELECOM INFRA PROJECT

https://github.com/facebook​
https://github.com/facebookincubator

...but there is a missing piece

Any guesses?

Open Source Firmware @ Facebook

OpenBMC initially released in 2015 and is quickly
becoming standard on OCP hardware

(

Open

System firmware is the next logical step

Why open source firmware?

Open Source Firmware @ Facebook
Scoping out the problem

U o=

g

——

=

Odense, Denmark -q Papillion, NE New Albany, OH Henrico, VA

That's a lot of servers

(and switches, too!)

...and we're not just working
on datacenters.

Tl B8

Booting is hard

* Ever-increasing amount of hardware
* Many local/removable storage media and networking devices

* Complex setup, complex protocols
* Firmware has become an operating system

* More demands for firmware security

* Verified/secure boot, measured/trusted boot, attestation

* Secure network protocols, crypto

* Provisioning is hard

Problems with closed firmware

* Archaic, complex, often quite buggy

* Even open firmwares are often unfamiliar and difficult to extend
* Reactive instead of Proactive debugging
* Hard to maintain, can't forward/backport features and fixes
* Vendor-specific tools

* "Dimensions" of supporting firmware at scale

* Robustness, flexibility, debugging, build and deployment...

Sustaining Operations

* Firmware has impact across product lifecycle
* Design, build, test, deploy, sustain, decommission
* What we want:

* Support many generations of equipment
* Feature parity

* Unified, adaptable toolkit

* Must support many different use cases

* Familiar / low barrier to entry

How we're addressing the problem

/ Boot ROM

—_—

\

Target kernel loaded
via network / cloud

coreboot
Silicon initialization Lin UXBO ot

\

/

Target kernel loaded via
local or removable storage

\ Boot kernel + initramﬂ

Why LinuxBoot

e We use Linux... a lot

* Production-quality drivers, networking, crypto
* Versatility

* Can be used on anything that is intended to run Linux.

* We have engineering teams who understand Linux very well

* Leverage talent we already have

* General goodness that open source brings

* Auditability, portability, modern development, collaboration, ...

Why LinuxBoot (cont'd)

* LinuxBoot enables us to...
* Simplify sustaining operations
* Maximize code reuse
* Share tools across all products
* Apply processes and best practices uniformly

* Have higher eyeball-to-code ratio

Current projects

e Supporting coreboot + LinuxBoot on a few projects
* Open Cellular:

* Rotundu, based on Intel Atom E38xx

Elgon, based on Cavium CN81xx (ARM®64)
* Open Compute Project:

* Mono Lake, based on Broadwell-DE

* Wedge 100S, based on Broadwell-DE

* Our LinuxBoot distribution uses u-root with systemboot

* Our infrastructure provisioning system also uses u-root

* Same team can support both pre- and post- boot phases

OS provisioning

OS provisioning

* |nstalling an OS on a single machine is simple

* |nstalling an OS at scale is complex

* Lots of moving parts

* Network booting introduces noise

* Provisioning flow:
* Power on

 DHCPv6 (firmware)
* TFTP (firmware)

* installer starts

Boot process issues

* DHCP implementations can have bugs

* TFTP implementations can have bugs

* Different firmwares can have different implementations and bugs
* At scale, a small fraction of errors can be a lot of operations

* What we need

* reliable clients

* better protocols

* control the implementation: know what you run, fix it,
Improve it

LinuxBoot in provisioning

* LinuxBoot can simplify provisioning a lot
* Tested DHCP or TFTP implementations
 HTTPS instead of TFTP
* We can run consistent firmware versions everywhere

* We know and control the firmware that we run

* We expect to largely reduce netboot failures in provisioning with this
approach

* Open means: Auditability, debuggability, security model, portability,
modern development, collaboration

LinuxBoot as OS installer

* LinuxBoot is not just for firmwares

* |Its components can be successfully used as a bootloader or an OS
installer

* We want to boot the infra with the same code that provisions our infra

* Facebook is experimenting systemboot as:

* Local bootloader and installer: ProvLauncher

 Network installer: YARD

systemboot

systemboot

A bootloader distribution based on u-root

* systemboot is a "distro" that implements a bootloader

* Based on u-root, that we are contributors of
* Written entirely in Go

° Provides tools for different boot scenarios

* The goalis to create components that we can iterate fast on

 Generic and stable ones will be contributed back to u-root

systemboot — what's inside?

* netboot: boot a kernel over the network using DHCPv6 or SLAAC,
HTTP(s), and kexec

* localboot: boot a kernel from disk, using Grub/Grub2 config or
direct device/kernel lookup

* LinuxBoot VPD: non-volatile variables storage
* Booters interface: a way to define something that can boot

* High level TPM library, and userspace utility TPMTool

 uinit: wrap all of the above in an executable to run at boot time

netboot

e Used to boot a device over the network

* Three phases

* Acquire network configuration: DHCPv6, SLAAC (DHCPv4 coming soon)
 Download a kernel image via HTTP or HTTPS

Example: DHCPv6 can give us an URL to download the kernel from

kexec into the kernel, using the specified command-line arguments

localboot

* Similar to netboot, but used to boot a local kernel
* Phases

* Scan for local disks
* Find a grub/grub2 config in a suitable location
* Find kernel, cmmdline and initramfs config

 Kexec into kernel with the above info

* Alternatively can use boot variables for kernel/ramfs/cmdline

VPD library

e Vital Product Data
* Key-value store on the flash chip
e Based on ChromeQOS's VPD format

* Used for non-volatile storage, similar to UEFI variables
* We use it to store boot configuration (netboot and localboot config)
* Can be extended to other uses

* If you don't like VPD, can be easily swapped out

Boot order

* Boot order is stored in VPD variables

* Value in JSON format. Example:

* Boot0000={
"type":"netboot",
"method":"dhcpv6",

"mac":"00:fa:ce:b0:0c:00"

Boot0001={
"type": "localboot”,
"method": "grub"

)

Boot0002={
"type": "localboot”,
"kernel": "/path/to/kernel"

"device _guid": "....",

-

Booters interface

* A generic interface to create new booters

* netboot and localboot are based on it

* New booters can implement it

* You can implement higher level policies, e.g. recovery from failed boot
* Very simple

* define TypeName() and Boot() methods

* Define JSON format by extending the generic booter JSON

* Register the booter, and systemboot will pick it up

TPM library and TPMTool

* High-level TPM library
* Goal: simplify the use of the TPM
* Based on Google's go-tpm
* Parts of it have been merged in go-tpm

* Can show info, take and clear TPM ownership, seal/unseal, dump PCRs,

pre-calculate hashes, dump TPM event log, and more

* TPMTool

* High-level userspace utility for TPM
* Written by Philipp Deppenwiese / 9elements CyberSecurity

* See tpmtool.org

Systemboot: how does it look like?

Supp
Supp
Supp
Ena

[mem
[mem

(demo time)

Future work

* Implement different security models:

* Boot configurations (almost completed)
* Boot EFI binaries (partially implemented)
* Measured boot

e Verified boot

Bringing it all together

Open Source Firmware@FB

* Improving while simplifying our boot flow
* Enabling collaboration inside and outside of Facebook
* Industry initiatives such as OCP and TIP

* Opening up firmware to be more inclusive

* Turning our Linux engineers into firmware engineers

Thanks!

Questions?
Additional resources:
* tpmtool.org * linuxboot.org
u-root.tk * opencompute.org

* systemboot.org * telecominfraproject.com

