

Turn ing L inux eng ineers
in to f i rmware eng ineers
David Hendricks Firmware Engineer/Facebook

Andrea Barberio Production Engineer/Facebook

OSF Track

3

System firmware in a nutshell

• First bit of code that runs when CPU is turned on

• Sometimes still referred to as "BIOS"

Initialize hardware

Load OS

4

Problem: Local booting is more complex

Then Now

Few interfaces Many interfaces and protocols

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia CommonsBy Toniperis [CC BY-SA 4.0], from Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

5

Problem: Local booting is more complex

Then Now

Few interfaces Many interfaces and protocols

Simple, low-speed links High-speed links

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia CommonsBy Toniperis [CC BY-SA 4.0], from Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

6

Problem: Local booting is more complex

Then Now

Few interfaces Many interfaces and protocols

Simple, low-speed links High-speed links

Blindly execute MBR (CHS 0/0/1) Decrypt, verify, mount filesystem

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia CommonsBy Toniperis [CC BY-SA 4.0], from Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

7

Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks

8

Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols

9

Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols

TFTP/PXE, security an afterthought TLS/HTTPS, designed for security

10

Why is Facebook interested in this

11

That's a lot of servers &
networking gear

12

Why is Facebook interested in this

13

Building out infrastructure for the world

14

Why is Facebook interested in this

• Many platforms, many firmwares, many bugs, many headaches

⎻ And it's getting more complicated as we're growing

• Firmware has not received as much attention as HW and SW

⎻ As our hardware portfolio grows, this must change

• Firmware is an important part of every product

⎻ Need in-house expertise, reusability, uniformity, maintainability

• Be open

⎻ Make it easy to work with partners and external parties

⎻ Re-use code across wide-range of products over many generations

15

Many parts to this puzzle...

16

UEFI Boot Flow

17

UEFI Boot Flow

18

UEFI Boot Flow

19

UEFI Boot Flow

20

UEFI Boot Flow

21

The Result: SysFW Is Complex

Then/Now Now/Future

SysFW contains an OS

22

The Result: SysFW Is Complex

Then/Now Now/Future

SysFW contains an OS

Opaque

Proprietary ecosystem

23

The Result: SysFW Is Complex

Then/Now Now/Future

SysFW contains an OS

Opaque

Proprietary ecosystem

Vendor-specific tooling

Product-specific

24

Solution: Open System Firmware

Then/Now Now/Future

SysFW contains an OS Open-source, e.g. LinuxBoot

Opaque

Proprietary ecosystem

Vendor-specific tooling

Product-specific

25

Solution: Open System Firmware

Then/Now Now/Future

SysFW contains an OS Open-source, e.g. LinuxBoot

Opaque Well-understood at FB

Proprietary ecosystem Auditable, debuggable

Vendor-specific tooling

Product-specific

26

Solution: Open System Firmware

Then/Now Now/Future

SysFW contains an OS Open-source, e.g. LinuxBoot

Opaque Well-understood at FB

Proprietary ecosystem Auditable, debuggable

Vendor-specific tooling Open-source tools

Product-specific Portable, re-usable

27

OCP Open System Firmware

Two current workstreams:

• OpenEDK – Buildable UEFI implementation

• LinuxBoot – Buildable hybrid of coreboot (or UEFI) and Linux

• Same/similar HW init, difference is the OS loading part

Which to use?

• Depends on your use case

• Both aim to offer fully buildable, customizable boot solutions

• Opportunities to share code between the two

• Especially for the early boot phases, runtime services (ACPI, RAS, etc).

28

LinuxBoot Approach: Let Linux Do It

•Put a kernel+initramfs in boot ROM

•Do minimal silicon init and jump to Linux as

soon as possible

•Use Linux to boot Linux

29

LinuxBoot Approach: Let Linux Do It

•Put a kernel+initramfs in boot ROM

•Do minimal silicon init and jump to Linux as

soon as possible

•Use Linux to boot Linux

•Production-quality drivers, networking

•Add features + tools as needed

•Debug, build, deploy on our schedule

30

LinuxBoot Approach: Let Linux Do It

•Put a kernel+initramfs in boot ROM

•Do minimal silicon init and jump to Linux as

soon as possible

•Use Linux to boot Linux

•Production-quality drivers, networking

•Add features + tools as needed

•Debug, build, deploy on our schedule

•Flexible security architecture

•Boot in seconds, not minutes

•Bring modern, open-source development to

the firmware

31

So we want to turn this...

32

...into this

33

@ Facebook

OS Provisioning

34

@ Facebook - OS Provisioning

Production Engineering: scalability, reliability, security, speed

OS Provisioning team:

• Automatically install the OS on our machines

• Simple on a single machine

• Can be very complex at large scale

• Lots of moving parts

• Network introduces noise

35

@ Facebook – Provisioning workflow

How does it look from the host firmware perspective?

• Power on

• DHCPv6 client: acquire network configuration

• TFTP client: download Network Boot Program

• Execute the installer

36

@ Facebook – Provisioning issues
• Some DHCP and TFTP implementations are buggy

• and TFTP is slow and unreliable

• Different machine types have different firmwares

• each firmware has its own set of bugs

• Most of the times PXE booting works

• but at scale a small fraction of errors can translate into a lot of operations

• What we need:

• Reliable clients

• Better protocols

• Control the implementation: know what we run, fix it, improve it

37

@ Facebook – Improve provisioning

LinuxBoot can simplify provisioning

• Tested DHCP and TFTP implementations

• Better protocols: HTTP and HTTPS

• Consistent firmware versions across the fleet

• We know and control the firmware

We expect to largely reduce netboot failures in provisioning with LinuxBoot

38

@ Facebook - Firmware upgrades

Now:

• Upgrading firmware now depends on vendors

• Different vendors have different standards and response time

• Debugging closed source firmware can be hard

• Vendors may be unable to reproduce the issue in their infra

• Once the updated firmware is ready, we need to run our validation

• The time between bug identification and roll-out to prod can be very long

We want to speed up the upgrade process and enable in-house debugging

39

@ Facebook - Firmware testing

Now:

• First phase of firmware testing is done by vendors

• Vendor tests are black-box to us

• Then we run our own tests

• Once the tests pass, a firmware is released for production use

• Then eventually deploy to production

• If we find a bug in production we have to go back to the vendor, and repeat the above
process

With LinuxBoot we can speed up and minimize the number of steps.

We can also enable instrumentation for firmware testing

40

@ Facebook – Openness

Open Source means:

• Auditability

• Debuggability

• Transparency in the security model

• Portability

• Modern development practices

• Collaboration with the community

41

@ Facebook – Code reuse

LinuxBoot is modular and multiplatform

Can run on datacenter servers, but the same code can run on completely
different platforms

Example:

• At Facebook: Datacenter servers, OpenCellular

• For you to try at home: coreboot-supported platforms such as Chromebooks

42

@ Facebook – not just servers

Use cases: booting a datacenter switch, a server, or a cellular base station

• Shared code

• Per-platform continuous firmware build and testing

• Run-time configuration determines the machine's behaviour

• Boot config, network boot program, etc

• Common, open system firmware and tools

• Operators and communities must be able to build and maintain sources

• Re-use code for datacenter and telecom infrastructure

• Adaptable to different threat models

43

@ Facebook – not just firmware

• LinuxBoot is not just for firmware

• Multiple reusable components

• Linux, u-root and systemboot can be used also as

• Network installer: YARD

• Pre-provisioned bootloader/installer: ProvLauncher

Sys temboot

45

@ Facebook - Systemboot

• Systemboot is a "distro" that implements a bootloader

• Based on u-root, that we are contributors of

• Written in Go

• Provides different tools for different boot scenarios

• The goal is to create components that we can iterate fast on

• Generic and stable ones will be contributed back to u-root

46

@ Facebook – Inside Systemboot

• LinuxBoot VPD: non-volatile key-value store

• netboot: boot a kernel over the network using DHCPv6 or SLAAC, HTTP(s) and
kexec

• localboot: boot a kernel from disk using Grub/Grub2 or custom location on disk

• Booters interface: define your custom boot method or policy

• TPMTool: high-level TPM library and command-line utility

• uinit: wrap all the above in in an executable used as entry point

47

@ Facebook – VPD library

• Vital Product Data

• Key-value store on the flash chip

• Based on ChromeOS's VPD

• Used for non-volatile storage, similar to UEFI variables

• We use it to store boot configuration (netboot and localboot config)

• Can be extended to other uses

• If you don't like VPD, can be easily swapped out

48

@ Facebook – VPD for boot order

• Boot order is stored in VPD variables

• Value in JSON format

• Examples:

• Boot0000={

"type":"netboot",

"method":"dhcpv6",

"mac":"00:fa:ce:b0:0c:00"

}

• Boot0001={

"type": "localboot",

"method": "path",

"kernel": "/path/to/kernel",

"device_guid": "…"

}

49

@ Facebook – netboot

• Used to boot a kernel downloaded over the network

• Three phases

• Acquire network configuration (DHCPv6, SLAAC or DHCPv4)

• Download kernel via HTTP or HTTPS

• Kexec the downloaded kernel

50

@ Facebook – localboot
• Similar to netboot, but boot from local storage

• Two way of operating, Grub mode and Path mode

• Grub mode

• Scan local disks

• Find Grub/Grub2 configuration

• Identify kernel, initramfs and kernel command line

• kexec

• Path mode (using VPD variables)

• Look for specific disk and partition

• Find kernel at specific path

• Optionally specify initramfs and kernel command line

• kexec

51

@ Facebook – Booters interface

• A generic interface to create new booters

• netboot and localboot are based on it

• New booters can implement it

• You can implement higher level policies, e.g. recovery from failed boot

• Very simple

• define TypeName() and Boot() methods

• Define JSON format by extending the generic booter JSON

• Register the booter, and systemboot will pick it up

52

@ Facebook – Example: netbooter
• https://github.com/systemboot/systemboot/blob/master/pkg/booter/netbooter.go

• Define NetBooter structure with JSON annotations, define NewNetbooter to parse JSON into NetBooter

• Then implement Boot() and TypeName():

// Boot will run the boot procedure. In the case of NetBooter, it will call the

// `netboot` command

func (nb *NetBooter) Boot() error {

bootcmd := []string{"netboot", "-d", "-userclass", "linuxboot"}

log.Printf("Executing command: %v", bootcmd)

cmd := exec.Command(bootcmd[0], bootcmd[1:]...)

cmd.Stdin, cmd.Stdout, cmd.Stderr = os.Stdin, os.Stdout, os.Stderr

if err := cmd.Run(); err != nil {

Return fmt.Errorf("Error executing %v: %v", cmd, err)

}

return nil

}

// TypeName returns the name of the booter type

func (nb *NetBooter) TypeName() string {

return nb.Type

}

http://r.go

53

@ Facebook – TPMTool

• High-level TPM library

• Goal: simplify the use of the TPM

• Based on Google's go-tpm

• Parts of it have been merged in go-tpm

• Can show info, take and clear TPM ownership, seal/unseal, dump PCRs, pre-

calculate hashes, dump TPM event log, and more

• TPMTool

• High-level userspace utility for TPM

• Written by Philipp Deppenwiese / 9elements CyberSecurity

• See tpmtool.org

54

@ Facebook – Systemboot demo

55

Conclusion

• With LinuxBoot you are in control of the firmware

• Simpler stack and more capabilities

• Support many platforms and use cases

• We are doing for firmware what Linux has done for the OS

• We are amplifying our firmware development capabilities by turning Linux
engineers into firmware engineers

