Z OPEN.

DCP SUMMIT

.

Turning Linux engineers into firmware engineers **David Hendricks** Firmware Engineer/Facebook **Andrea Barberio** Production Engineer/Facebook

OPEN. FOR BUSINESS

OSF Track

System firmware in a nutshell

- First bit of code that runs when CPU is turned on
- Sometimes still referred to as "BIOS"

Initialize hardware

Problem: Local booting is more complex

Then Few interfaces

By Toniperis [<u>CC BY-SA 4.0</u>], from Wikimedia Commons

By Dmitry Nosachev [<u>CC BY-SA 4.0</u>], from Wikimedia Commons

Now

Many interfaces and protocols

Problem: Local booting is more complex

Then

Few interfaces

Simple, low-speed links

By Toniperis [<u>CC BY-SA 4.0</u>], from Wikimedia Commons

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia Commons

Now

Many interfaces and protocols High-speed links

Problem: Local booting is more complex

Then

Few interfaces

Simple, low-speed links

Blindly execute MBR (CHS 0/0/1)

By Toniperis [<u>CC BY-SA 4.0</u>], from Wikimedia Commons

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia Commons

Problem: Network booting is more complex

Then Small, trusted networks

Now

Global, untrusted networks

Problem: Network booting is more complex

Then Small, trusted networks Few, simple interfaces and protocols

Now

Global, untrusted networks Many interfaces and protocols

Problem: Network booting is more complex

Then

Small, trusted networks

Few, simple interfaces and protocols

TFTP/PXE, security an afterthought

Now

Global, untrusted networks Many interfaces and protocols TLS/HTTPS, designed for security

Why is Facebook interested in this

That's a lot of servers & networking gear

Why is Facebook interested in this

Building out infrastructure for the world

TELECOM INFRA PROJECT

Why is Facebook interested in this

- Many platforms, many firmwares, many bugs, many headaches
- And it's getting more complicated as we're growing
- Firmware has not received as much attention as HW and SW
- As our hardware portfolio grows, this must change
- Firmware is an important part of every product
- Need in-house expertise, reusability, uniformity, maintainability
- Be open
- Make it easy to work with partners and external parties
- Re-use code across wide-range of products over many generations

Many parts to this puzzle...

UEFI Boot Flow Platform Initialization (PI) Boot Phases

UEFI Boot Flow

Platform Initialization (PI) Boot Phases

UEFI Boot Flow

Platform Initialization (PI) Boot Phases

UEFI Boot Flow Platform Initialization (PI) Boot Phases

UEFI Boot Flow Platform Initialization (PI) Boot Phases

The Result: SysFW Is Complex

Then/Now SysFW contains an OS

Now/	Future
------	--------

The Result: SysFW Is Complex

Then/Now SysFW contains an OS **Opaque** Proprietary ecosystem

Now/	Future
------	--------

The Result: SysFW Is Complex

Then/Now SysFW contains an OS Opaque Proprietary ecosystem Vendor-specific tooling Product-specific

Now/	Future
------	--------

Solution: Open System Firmware

Then/Now SysFW contains an OS Opaque Proprietary ecosystem Vendor-specific tooling Product-specific

Now/Future

Open-source, e.g. LinuxBoot

Solution: Open System Firmware

Then/Now SysFW contains an OS Opaque Proprietary ecosystem Vendor-specific tooling Product-specific

Now/Future

Open-source, e.g. LinuxBoot

Well-understood at FB

Auditable, debuggable

Solution: Open System Firmware

Then/Now SysFW contains an OS Opaque Proprietary ecosystem Vendor-specific tooling Product-specific

Now/Future Open-source, e.g. LinuxBoot Well-understood at FB Auditable, debuggable **Open-source tools Portable, re-usable**

OCP Open System Firmware

Two current workstreams:

- OpenEDK Buildable UEFI implementation
- LinuxBoot Buildable hybrid of coreboot (or UEFI) and Linux
- Same/similar HW init, difference is the OS loading part

Which to use?

- Depends on your use case
- Both aim to offer fully buildable, customizable boot solutions
- Opportunities to share code between the two
- Especially for the early boot phases, runtime services (ACPI, RAS, etc).

LinuxBoot Approach: Let Linux Do It

- Put a kernel+initramfs in boot ROM
- Do minimal silicon init and jump to Linux as soon as possible
- Use Linux to boot Linux

LinuxBoot Approach: Let Linux Do It

- Put a kernel+initramfs in boot ROM
- Do minimal silicon init and jump to Linux as soon as possible
- Use Linux to boot Linux
- Production-quality drivers, networking
- Add features + tools as needed
- Debug, build, deploy on our schedule

LinuxBoot Approach: Let Linux Do It

- Put a kernel+initramfs in boot ROM
- Do minimal silicon init and jump to Linux as soon as possible
- Use Linux to boot Linux
- Production-quality drivers, networking
- Add features + tools as needed
- Debug, build, deploy on our schedule
- Flexible security architecture
- Boot in seconds, not minutes
- Bring modern, open-source development to the firmware

So we want to turn this... Platform Initialization (PI) Boot Phases

...into this

OS Provisioning

Production Engineering: scalability, reliability, security, speed

OS Provisioning team:

- Automatically install the OS on our machines
- Simple on a single machine
- Can be very complex at large scale
 - Lots of moving parts
 - Network introduces noise

How does it look from the host firmware perspective?

- Power on
- DHCPv6 client: acquire network configuration
- **TFTP client: download Network Boot Program**
- Execute the installer

@ Facebook – Provisioning workflow

- Some DHCP and TFTP implementations are buggy
 - and TFTP is slow and unreliable
- Different machine types have different firmwares
 - each firmware has its own set of bugs
- Most of the times PXE booting works
- What we need:
 - Reliable clients
 - Better protocols
 - Control the implementation: know what we run, fix it, improve it

@ Facebook – Provisioning issues

• but at scale a small fraction of errors can translate into a lot of operations

LinuxBoot can simplify provisioning

- **Tested DHCP and TFTP implementations**
- Better protocols: HTTP and HTTPS
- Consistent firmware versions across the fleet
- We know and control the firmware

We expect to largely reduce netboot failures in provisioning with LinuxBoot

@ Facebook – Improve provisioning

Now:

- Upgrading firmware now depends on vendors
- Different vendors have different standards and response time
- Debugging closed source firmware can be hard
- Vendors may be unable to reproduce the issue in their infra
- Once the updated firmware is ready, we need to run our validation
 - The time between bug identification and roll-out to prod can be very long

We want to speed up the upgrade process and enable in-house debugging

@ Facebook - Firmware upgrades

Now:

- First phase of firmware testing is done by vendors
 - Vendor tests are black-box to us
- Then we run our own tests
 - Once the tests pass, a firmware is released for production use •
- Then eventually deploy to production
- process

With LinuxBoot we can speed up and minimize the number of steps. We can also enable instrumentation for firmware testing

• If we find a bug in production we have to go back to the vendor, and repeat the above

Open Source means:

- Auditability
- Debuggability
- Transparency in the security model
- Portability
- Modern development practices
- Collaboration with the community

LinuxBoot is modular and multiplatform Can run on datacenter servers, but the same code can run on completely different platforms

Example:

- At Facebook: Datacenter servers, OpenCellular

• For you to try at home: coreboot-supported platforms such as Chromebooks

Use cases: booting a datacenter switch, a server, or a cellular base station

- Shared code
- Per-platform continuous firmware build and testing
- Run-time configuration determines the machine's behaviour
 - Boot config, network boot program, etc
- Common, open system firmware and tools
 - Operators and communities must be able to build and maintain sources
 - Re-use code for datacenter and telecom infrastructure
- Adaptable to different threat models

- LinuxBoot is not just for firmware
- Multiple reusable components
- Linux, u-root and systemboot can be used also as
 - Network installer: YARD
 - Pre-provisioned bootloader/installer: ProvLauncher

Systemboot

OPEN. FOR BUSINESS

- Systemboot is a "distro" that implements a bootloader
- Based on u-root, that we are contributors of
- Written in Go
- Provides different tools for different boot scenarios
- The goal is to create components that we can iterate fast on Generic and stable ones will be contributed back to u-root

- LinuxBoot VPD: non-volatile key-value store
- netboot: boot a kernel over the network using DHCPv6 or SLAAC, HTTP(s) and kexec
- localboot: boot a kernel from disk using Grub/Grub2 or custom location on disk
- Booters interface: define your custom boot method or policy
- **TPMTool:** high-level TPM library and command-line utility
- uinit: wrap all the above in in an executable used as entry point

@ Facebook – Inside Systemboot

- Vital Product Data
- Key-value store on the flash chip
- Based on ChromeOS's VPD
- Used for non-volatile storage, similar to UEFI variables
 - We use it to store boot configuration (netboot and localboot config)
 - Can be extended to other uses
 - If you don't like VPD, can be easily swapped out

- Boot order is stored in VPD variables
- Value in JSON format
- Examples:
 - Boot0000={

"type":"netboot", "method":"dhcpv6", "mac":"00:fa:ce:b0:0c:00"

@ Facebook – VPD for boot order

• Boot0001={

"type": "localboot",

"method": "path",

"kernel": "/path/to/kernel",

"device_guid": "..."

- Used to boot a kernel downloaded over the network
- Three phases
 - Acquire network configuration (DHCPv6, SLAAC or DHCPv4)
 - Download kernel via HTTP or HTTPS
 - Kexec the downloaded kernel

- Similar to netboot, but boot from local storage
- Two way of operating, Grub mode and Path mode
- Grub mode
 - Scan local disks
 - Find Grub/Grub2 configuration
 - Identify kernel, initramfs and kernel command line
 - kexec
- Path mode (using VPD variables)
 - Look for specific disk and partition
 - Find kernel at specific path
 - Optionally specify initramfs and kernel command line
 - kexec

A generic interface to create new booters

- netboot and localboot are based on it
- New booters can implement it
- You can implement higher level policies, e.g. recovery from failed boot
- Very simple
 - define TypeName() and Boot() methods
 - Define JSON format by extending the generic booter JSON
 - Register the booter, and systemboot will pick it up

@ Facebook – Booters interface

- https://github.com/systemboot/systemboot/blob/master/pkg/booter/netbooter.go
- Define NetBooter structure with JSON annotations, define NewNetbooter to parse JSON into NetBooter
- Then implement Boot() and TypeName():

```
// Boot will run the boot procedure. In the case of NetBooter, it will call the
// `netboot` command
func (nb *NetBooter) Boot() error {
  bootcmd := []string{"netboot", "-d", "-userclass", "linuxboot"}
  log.Printf("Executing command: %v", bootcmd)
  cmd := exec.Command(bootcmd[0], bootcmd[1:]...)
  cmd.Stdin, cmd.Stdout, cmd.Stderr = os.Stdin, os.Stdout, os.Stderr
  if err := cmd.Run(); err != nil {
    Return fmt.Errorf("Error executing %v: %v", cmd, err)
  return nil
```

// TypeName returns the name of the booter type func (nb *NetBooter) TypeName() string { return nb.Type

@ Facebook – Example: netbooter

- High-level TPM library
 - Goal: simplify the use of the TPM
 - Based on Google's go-tpm
 - Parts of it have been merged in go-tpm
 - calculate hashes, dump TPM event log, and more
- TPMTool
 - High-level userspace utility for TPM
 - Written by Philipp Deppenwiese / 9elements CyberSecurity
 - See tpmtool.org

Can show info, take and clear TPM ownership, seal/unseal, dump PCRs, pre-

2018/08/30 15:53:39

=
2018/08/30 15:53:39 ***********************************
2018/08/30 15:53:39 Starting boot sequence, press CTRL-C within 5 second
2018/08/30 15:53:39 ***********************************
2018/08/30 15:53:44 BOOT ENTRIES:
2018/08/30 15:53:44 Boot entries failed
2018/08/30 15:53:44 Falling back to the default boot sequence
2018/08/30 15:53:44 Running boot command: [netboot -userclass linuxboot
<pre>kexec_core: Starting new kernel</pre>
<pre>[0.000000] Linux version 4.6.7-53_fbk14_3450_gdcef56d (root@sandcast</pre>
<pre>[0.000000] Command line: ro root=LABEL=/ biosdevname=0 net.ifnames=0</pre>
<pre>[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256</pre>
<pre>[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating po</pre>
<pre>[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'</pre>
<pre>[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'</pre>
<pre>[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832</pre>
<pre>[0.000000] x86/fpu: Using 'eager' FPU context switches.</pre>
[0.000000] e820: BIOS-provided physical RAM map:
<pre>[0.000000] BIOS-e820: [mem 0x0000000000000000000000000000000000</pre>
<pre>[0.000000] BIOS-e820: [mem 0x0000000000000000000000000000000000</pre>
<pre>[0.000000] BIOS-e820: [mem 0x0000000000000000000000000000000000</pre>

@ Facebook – Systemboot demo

- d]

```
stle823.prn2.facebook.com) (gcc version 4.9.x-google 20150123 (prerelease) (GCC) )
=0 fsck.repair=yes ipv6.autoconf=0 erst_disable dis_ucode_ldr crashkernel=128M nopa
point registers'
=2 bytes, using 'standard' format.
=:ype 16
usable
=:served
```


Conclusion

- With LinuxBoot you are in control of the firmware
- Simpler stack and more capabilities
- Support many platforms and use cases
- We are doing for firmware what Linux has done for the OS
- We are amplifying our firmware development capabilities by turning Linux engineers into firmware engineers

CP SUMMIT

FOR BUSINESS.

