SUMMIT

L/

FOR
BUSINESS.

N

-
7

OSF Track

Turning Linux engineers
into firmware engineers

David Hendricks Firmware Engineer/Facebook
Andrea Barberio Production Engineer/Facebook

OPEN. FOR BUSINESS

System firmware in a nutshell

* First bit of code that runs when CPU is turned on
* Sometimes still referred to as "BIOS"

Load OS

Initialize hardware

Problem: Local booting iIs more complex

T

bl

-
-
-
e
-
—
-
-
-
-
_—

~
-
~
i~
)
T l-

P/N: MZVKP2TOHMLP l
NVMe SSD e, zmes SNMISUNG

: SIITJIiIIIIIIIflIIfIIIIIJJI nuﬂ‘lnulnuunnuﬁun
T ™

FE0 R Ay
NP

By Toniperis [CC BY-SA 4.0], from Wikimedia Commons By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia Commons

Then Now
Few Interfaces Many Iinterfaces and protocols

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Problem: Local booting iIs more complex

T

bl

-
-
-
e
-
—
-
-
-
-
_—

~
-
~
i~
)
T l-

P/N: MZVKP2TOHMLP SAMSUNG i~

Model: MZ - V6P2T0 2017.03

NVMe SSD -
m ;ISNI:D: RATED: DC+3.3V===2.7A
260 PRO S i

EUIGA: — REM - SEC - MZ - V6P2T0
samsonc ececrmonncs co.ro. 218 [IEINVIN LIV 00000 0 OO 00

= L

=

By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia Commons

By Toniperis [CC BY-SA 4.0], from Wikimedia Commons

Then Now
Few Interfaces Many Iinterfaces and protocols

Simple, low-speed links High-speed links

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Problem: Local booting iIs more complex

By Toniperis [CC BY-SA 4.0], from Wikimedia Commons By Dmitry Nosachev [CC BY-SA 4.0], from Wikimedia Commons

Then Now
Few Interfaces Many Iinterfaces and protocols
Simple, low-speed links High-speed links
Blindly execute MBR (CHS 0/0/1) Decrypt, verify, mount filesystem

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Problem: Network booting Is more complex

=
78

e

Then Now

Small, trusted networks Global, untrusted networks

Problem: Network booting Is more complex

=
78

e

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols

Problem: Network booting Is more complex

=
78

e

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols

TFTP/PXE, security an afterthought | TLS/HTTPS, designed for security

Why is Facebook interested in this

REB " -

Forest City, NC _ i P Altoona, IA

. '\.’
Ry

i

Fort Worth, TX

1~ sl S

O_depse,/Denmark ' Papillion, NE , Henrico, VA

That's a lot of servers &
networking gear

Why is Facebook interested in this

12

@ TELECOM INFRA PROJECT

Building out infrastructure for the world

Why is Facebook interested in this

* Many platforms, many firmwares, many bugs, many headaches
— And it's getting more complicated as we're growing

* Firmware has not received as much attention as HW and SW

— As our hardware portfolio grows, this must change

* Firmware is an important part of every product

— Need in-house expertise, reusability, uniformity, maintainability
* Be open

— Make It easy to work with partners and external parties

— Re-use code across wide-range of products over many generations

Many parts to this puzzle...

O
i

UEFI Boot Flow

Platform Initialization (Pl) Boot Phases

. UEFI
Interface

Pre

Verifier OS-Absent

Transient OS
Device, Environment
Bus, or (2
Service)
SERen Transient OS Boot
Driver
Loader

EFI Driver ()

Di h Boot : OS-Present
'spatcher Manager App

Intrinsic | Final OS Boot Final OS
C Services Loader Environment
Security Pre EFI Driver Execution | Boot Dev Transient Run Time After
(SEC) Initialization Enw(r[c)))r(\E;ent ?glsg; System Load (RT) Life
(PEI) (TSL) (AL)
gPower on [.. Platform initialization . .] [s 5« OS books s « ..] Shutdown

UEFI Boot Flow

Platform Initialization (Pl) Boot Phases

uri Driver Execution [' After |
(SEC) Environment Select System Load (RT) Life
(OXE) (BDS) TS (AL)

Power on k5 orm initialzation . . | {....0OSboot....| Shutdown

UEFI Boot Flow

Platform Initiafizatioms(Pl) Boot Phases

(SEC) Initialization
(PET)

(fter
{RT) Life
{AL)

] Shutdown

Security l Pre EFI

ron [.. Platform initializatiol, .

@

UEFI Boot Flow

Platform Initialization (Pl) Boot Phases

After
Life

(AL)

Security Pre EFI
(SEC) Indtialization
{PEI)

Erwironment Select

Driver Execution | 8oot Dev Transient
(DXE) {(BDS)

Power on [.. Platform inttialization . .) [....OSboot....]

(0)

UEFI Boot Flow

Platform Initialization (Pl) Boot Phases

UEF
TS |
App
8
Transienmt OS
Environment

7

. |] |
Security Pre EFI Driver Execution | Boot Dev Transient After
(SEC) | Initialization 5’"‘('3;‘8““ ?;'gg System Load Life

{(PEI) (TSL) (AL)
Power on [.. Platform inttialization . .) [....0Sboot....] Shutdown

(0)

The Result: SysFW Is Complex

Then/Now

Now/Future

SysFW contains an OS

21

The Result: SysFW Is Complex

Then/Now

Now/Future

SysFW contains an OS

Opaque

Proprietary ecosystem

The Result: SysFW Is Complex

Then/Now

Now/Future

SysFW contains an OS

Opague

Proprietary ecosystem

Vendor-specific tooling

Product-specific

Solution: Open System Firmware

LinuxBoot
Then/Now Now/Future
SysFW contains an OS Open-source, e.g. LinuxBoot
Opague

Proprietary ecosystem

Vendor-specific tooling

Product-specific

24

Solution: Open System Firmware

LinuxBoot
Then/Now Now/Future
SysFW contains an OS Open-source, e.qg. LinuxBoot
Opaque Well-understood at FB

Proprietary ecosystem

Auditable, debuggable

Vendor-specific tooling

Product-specific

25

Solution: Open System Firmware

LinuxBoot
Then/Now Now/Future
SysFW contains an OS Open-source, e.qg. LinuxBoot
Opaque Well-understood at FB

Proprietary ecosystem

Auditable, debuggable

Vendor-specific tooling

Open-source tools

Product-specific

Portable, re-usable

26

OCP Open System Firmware

Two current workstreams:
* OpenEDK - Buildable UEFI implementation

* LinuxBoot - Buildable hybrid of coreboot (or UEFI) and Linux
* Same/similar HW init, difference is the OS loading part

Which to use”?
* Depends on your use case

* Both aim to offer fully buildable, customizable boot solutions
* Opportunities to share code between the two

* Especially for the early boot phases, runtime services (ACPI, RAS, etc).

LiInuxBoot Approach: Let Linux Do It

* Put a kernel+initramfs in boot ROM

* Do minimal silicon initand jump to Linux as "
soon as possible /@ \/v

* Use Linux to boot Linux coreboot m e
e~

U-Boot SPL

@ LinuxBoot B ﬁ
Silicon initialization A

done by UEFI PI,
coreboot, U-Boot

SPL, etc. D A
k Boot kernel + initray

Target kernel loaded via

local or removable storage

LiInuxBoot Approach: Let Linux Do It

* Put a kernel+initramfs in boot ROM

* Do minimal silicon init and jump to Linux as / — \
soon as possible @ .

*Use Linux to boot Linux ﬁ‘;’:‘t’g:f . m g i
* Production-quality drivers, networking @ T

* Add features + tools as needed —— ﬁ
 Debug, build, deploy on our schedule i N e

SPL, etc.
K Boot kernel + initray

LiInuxBoot Approach: Let Linux Do It

* Put a kernel+initramfs in boot ROM

* Do minimal silicon init and jump to Linux as f — \
soon as possible @

*Use Linux to boot Linux ﬁ‘fe't’ggf o m - i network / doud
* Production-quality drivers, networking @ T

* Add features + tools as needed —— ﬁ
 Debug, build, deploy on our schedule dona by UEFI P 6 5 ‘ [——
* Flexible security architecture \SPL’ - oo O y S

* Boot Iin seconds, not minutes

* Bring modern, open-source development to
the firmware

So we want to turn this...

Platform Initiafizatiom(PIl) Boot Phases

(SEC) Initialization
(PET)

(RT) Life
{AL)

Security [Pre EFI

Power on [..Platform initializatitly05balf....1 | J Shutdown

...Into this

Final OS
cnvironment

Security Pre EFI Run Time After
(SEC) Initialization (RT) Life
(PEI) (AL)

Power on [.. Platform initializa - \ 1 Shutdown

o

m @ Facebook

LinuxBoot

OS Provisioning

m @ Facebook - OS Provisioning

LinuxBoot

Production Engineering: scalability, reliability, security, speed

OS Provisioning team:
* Automatically install the OS on our machines
* Simple on a single machine
* Can be very complex at large scale
* Lots of moving parts

* Network introduces noise

m @ Facebook - Provisioning workflow

LinuxBoot

How does it look from the host firmware perspective?

* Power on

 DHCPvOG client: acquire network configuration
* TFTP client: download Network Boot Program
* EXxecute the installer

m @ Facebook - Provisioning ISsues

LinuxBoot
* Some DHCP and TFTP implementations are buggy

* and TFTP Is slow and unreliable
* Different machine types have different firmwares
* each firmware has its own set of bugs
* Most of the times PXE booting works
* put at scale a small fraction of errors can translate into a lot of operations

* What we need:
* Reliable clients
* Better protocols
* Control the implementation: know what we run, fix it, improve it

m @ Facebook - Improve provisioning

LinuxBoot

LinuxBoot can simplify provisioning

 Tested DHCP and TFTP implementations

» Better protocols: HTTP and HTTPS

* Consistent firmware versions across the fleet
* We know and control the firmware

We expect to largely reduce netboot failures in provisioning with LinuxBoot

m @ Facebook - Firmware upgrades

LinuxBoot

Now:
* Upgrading firmware now depends on vendors
* Different vendors have different standards and response time
* Debugging closed source firmware can be hard
* Vendors may be unable to reproduce the issue In their infra
* Once the updated firmware is ready, we need to run our validation
* The time between bug identification and roll-out to prod can be very long

We want to speed up the upgrade process and enable in-house debugging

@ Facebook - Firmware testing

LinuxBoot

Now:
* First phase of firmware testing is done by vendors
* Vendor tests are black-box to us
* Then we run our own tests
* Once the tests pass, a firmware is released for production use

* Then eventually deploy to production

* If we find a bug in production we have to go back to the vendor, and repeat the above
process

With LinuxBoot we can speed up and minimize the number of steps.
We can also enable instrumentation for firmware testing

m @ Facebook - Openness

LinuxBoot

Open Source means:

* Auditability

* Debuggability

* Transparency in the security model
* Portability

* Modern development practices

* Collaboration with the community

m @ Facebook - Code reuse

LinuxBoot

LinuxBoot is modular and multiplatform

Can run on datacenter servers, but the same code can run on completely
different platforms

Example:
* At Facebook: Datacenter servers, OpenCellular
* For you to try at home: coreboot-supported platforms such as Chromebooks

@ Facebook - not just servers

LinuxBoot

Use cases: booting a datacenter switch, a server, or a cellular base station

* Shared code

* Per-platform continuous firmware build and testing

* Run-time configuration determines the machine's behaviour
* Boot config, network boot program, etc

 Common, open system firmware and tools
* Operators and communities must be able to build and maintain sources
* Re-use code for datacenter and telecom infrastructure

* Adaptable to different threat models

m @ Facebook - not just firmware

LinuxBoot

* LinuxBoot is not just for firmware
* Multiple reusable components

* Linux, u-root and systemboot can be used also as

* Network installer: YARD
* Pre-provisioned bootloader/installer: ProvLauncher

Systemboot

OPEN. FOR BUSINESS

m @ Facebook - Systemboot

LinuxBoot

» Systemboot is a "distro" that implements a bootloader
* Based on u-root, that we are contributors of

* Written in Go

* Provides different tools for different boot scenarios

* The goal is to create components that we can iterate fast on

* Generic and stable ones will be contributed back to u-root

m @ Facebook - Inside Systemboot

LinuxBoot

* LinuxBoot VPD: non-volatile key-value store

* netboot: boot a kernel over the network using DHCPvo or SLAAC, HTTP(s) and
kexec

* localboot: boot a kernel from disk using Grub/Grub2 or custom location on disk
* Booters interface: define your custom boot method or policy
* TPMTool: high-level TPM library and command-line utility

* uinit: wrap all the above in in an executable used as entry point

m @ Facebook - VPD library

LinuxBoot

* Vital Product Data

* Key-value store on the flash chip

* Based on ChromeOS's VPD
* Used for non-volatile storage, similar to UEFI variables

* We use it to store boot configuration (netboot and localboot config)
* Can be extended to other uses

* |If you don't like VPD, can be easily swapped out

m @ Facebook - VPD for boot order

LinuxBoot
* Boot order Is stored in VPD variables

* Value in JSON format

* Examples:

» Boot0000={ * Boot0001={
"type":"netboot", "type": "localboot”,
"method":"dhcpv6”, "'method": "path’,
"mac":"00:fa:ce:b0:0c:00" "kernel": "/path/to/kernel’,

) "device_guid": "..."

)

m @ Facebook - netboot

LinuxBoot

* Used to boot a kernel downloaded over the network

* Three phases
* Acquire network configuration (DHCPvo, SLAAC or DHCPv4)

* Download kernel via HTTP or HTTPS
« Kexec the downloaded kernel

, @ Facebook - localboot
LinuxBoot

* Similar to netboot, but boot from local storage
* Two way of operating, Grub mode and Path mode
* Grub mode
* Scan local disks
* Find Grub/Grub2 configuration
* |dentify kernel, initramfs and kernel command line
* kexec
* Path mode (using VPD variables)
* Look for specific disk and partition
* Find kernel at specific path
* Optionally specify initramfs and kernel command line
* kexec

m @ Facebook - Booters interface

LinuxBoot

* A generic interface to create new booters

* netboot and localboot are based on it

* New booters can implement it

* You can implement higher level policies, e.g. recovery from failed boot
*Very simple

* define TypeName() and Boot() methods
* Define JSON format by extending the generic booter JSON
* Register the booter, and systemboot will pick 1t up

@ Facebook - Example: netbooter

LinuxBoot
* https://github.com/systemboot/systemboot/blob/master/pkg/booter/netbooter.go

* Define NetBooter structure with JSON annotations, define NewNetbooter to parse JSON into NetBooter
* Then implement Boot() and TypeName():

// Boot will run the boot procedure. In the case of NetBooter, it will call the

// netboot” command
func (nb *NetBooter) Boot() error {
bootcmd := []string{"netboot", "-d", "-userclass", "linuxboot"}
log.Printf("Executing command: %v", bootcmd)
cmd := exec.Command(bootcmd[O], bootcmd[1:]...)
cmd.Stdin, cmd.Stdout, cmd.Stderr = 0s.Stdin, 0s.Stdout, os.Stderr
if err := emd.Run(); err = nil {
Return fmt.Errorf("Error executing %v: %v", cmd, err)

}

return nil

}

// TypeName returns the name of the booter type
func (nb *NetBooter) TypeName() string {
return nb.Type

}

http://r.go

m @ Facebook - TPMTool

LinuxBoot
* High-level TPM library

* Goal: simplify the use of the TPM
* Based on Google's go-tpm
* Parts of it have been merged in go-tpm

* Can show info, take and clear TPM ownership, seal/unseal, dump PCRSs, pre-
calculate hashes, dump TPM event log, and more

* TPMTool
* High-level userspace utility for TPM
* Written by Philipp Deppenwiese / 9elements CyberSecurity

* See tpmtool.org

@ Facebook - Systemboot demo

LinuxBoot

2018/08/30 15:
2018/68/38 15:
2018/608/38 15:
Z018/88/30 15:
2018/88/30 15:
2018/88/30 15:
2018/08/30 15:
kexec core: 5t

[

e

:39 Starting boot seqguenc
: 39
:44 BOOT ENTRIES:
:44 Boot entries faile
:44 Falling back to the default boot seguence
44 FJﬁﬁ;ﬁg boot command: [netboot -userclass linuxboot -d]
rti new kernel
.000000] L_|JI version 4.6.7-53 fbkl4 3450 gdcef56d (root@sandcastleB823.prn2.facebook.com) (g
.0000008] Command line: ro mmt LABEL=/ biosdevname=0 net.ifnames=0 fsck.repair=yes 1pvb.autoc
.000000] x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256
.000000] xB6/Tpu: Supporting XSAVE feature @x001: "xB7 floating point registers
.0000008] x86/fpu: Supporting XSAVE feature 0x0802: 'SS5E reglsters
.000000] xB86/fpu: Supporting XSAVE feature 0x0084: 'AVX registers
.0000800] x86/fpu: '1at1ﬁc xstate features 0x7, context size 1s 832 bytes, using 'standard® format.
.006000] x86/fpu: Usi eager' FPU context switches.
.000000] e820: BIOS-pr -ovided physical RAM map:
.000000] BIODS-=820: [mem 6x0000000000000000-0x000000000GBBGTTT] type 16
.000600] BIDS-2820: [mem Ox0000000000001060 - DxDDDGDDGDDDDfoff] usable
.000000] BIOS-eB20: reserved

'-.l-' Ly Ly L) g L Ll

ﬂ.-' '-.-'I (W I I I 0 W

cC version 4.
onT=0 erst o

9. oogle 20150123 (prerelease) (GCC))
T S

X -
able dis ucode ldr crashkernel=128M nop:

DD D DD oD OO D@D

[
[
|
|
[
[
[
[
|
|
[

Conclusion

* With LinuxBoot you are in control of the firmware

* Simpler stack and more capabilities

* Support many platforms and use cases

* We are doing for firmware what Linux has done for the OS

* We are amplifying our firmware development capabilities by turning Linux
engineers into firmware engineers

OCP
SUMMIT

OPEN.

BUSINESS.

