
Make your system firmware faster, 
more flexible and reliable with 
LinuxBoot

David Hendricks: Firmware Engineer
Andrea Barberio: Production Engineer



• Facebook promotes open source

• Systems Software: Kernel, CentOS, chef, systemd, etc.

• Hardware: Open Compute Project, Telecom Infrastructure Project

• Lots more: https://github.com/facebook and https://github.com/facebookincubator

Open Source @ Facebook

https://github.com/facebook​
https://github.com/facebookincubator


Any guesses?

...but there is a missing piece



Open Source Firmware @ Facebook

OpenBMC initially released in 2015 and is quickly 

becoming standard on OCP hardware

System firmware is the next logical step



• First bit of code that runs when CPU is turned on

• Sometimes referred to as "BIOS"

System firmware in a nutshell

Initialize 
Hardware

Load OS



Problem: Local booting is more complex

Then Now

Few, simple interfaces Many interfaces and protocols



Problem: Local booting is more complex

Then Now

Few, simple interfaces Many interfaces and protocols

Simple, low-speed links High-speed links



Problem: Local booting is more complex

Then Now

Few, simple interfaces Many interfaces and protocols

Simple, low-speed links High-speed links

Blindly execute MBR (CHS 0/0/1) Decrypt & mount filesystem



Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks



Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols



Problem: Network booting is more complex

Then Now

Small, trusted networks Global, untrusted networks

Few, simple interfaces and protocols Many interfaces and protocols

TFTP/PXE, security an afterthought TLS/HTTPS, designed for security



TL;DR: SysFW is complex

Then/Now

SysFW/BIOS contains an OS



TL;DR: SysFW is complex

Then/Now

SysFW/BIOS contains an OS

Opaque

Proprietary ecosystem



TL;DR: SysFW is complex

Then/Now

SysFW/BIOS contains an OS

Opaque

Proprietary ecosystem

Vendor-specific tooling

Product-specific



TL;DR: SysFW is complex

Then/Now Now/Future

SysFW/BIOS is an OS Let Linux Do It

Opaque

Proprietary ecosystem

Vendor-specific tooling

Product-specific



The Solution: Let Linux Do It

Then/Now Now/Future

SysFW/BIOS is an OS Let Linux Do It

Opaque Open, well-understood at FB

Proprietary ecosystem Auditable, debuggable

Vendor-specific tooling

Product-specific



The Solution: Let Linux Do It

Then/Now Now/Future

SysFW/BIOS is an OS Let Linux Do It

Opaque Open, well-understood at FB

Proprietary ecosystem Auditable, debuggable

Vendor-specific tooling Open-source tools

Product-specific Portable, re-usable



Let Linux Do it

• Put a kernel+initramfs in boot ROM

• Do minimal silicon init and jump to 
Linux as soon as possible

• Use Linux to boot Linux



Let Linux Do it

• Put a kernel+initramfs in boot ROM

• Do minimal silicon init and jump to 
Linux as soon as possible

• Use Linux to boot Linux

• Production-quality drivers, 
networking

• Add features + tools as needed

• Debug, build, deploy on our schedule



Let Linux Do it

• Put a kernel+initramfs in boot ROM

• Do minimal silicon init and jump to 
Linux as soon as possible

• Use Linux to boot Linux

• Production-quality drivers, networking

• Add features + tools as needed

• Debug, build, deploy on our schedule

• Flexible security architecture

• Boot in seconds, not minutes

• Bring modern, open-source 
development to the firmware



Why open source firmware?



Scoping out the problem

Open Source Firmware @ Facebook



That's a lot of servers
(and switches, too!)



...and we're not just working 

on datacenters.



OS provisioning



• Andrea Barberio – Host Provisioning Engineering @ Facebook

• Installing an OS on a single machine is simple

• Installing an OS at scale is complex

• Lots of moving parts

• Network booting introduces noise

OS Provisioning



• From the machine's perspective:
• Power on

• DHCPv6 (firmware)

• TFTP (firmware)

• installer starts

Provisioning a physical machine



• It works most of the times

• However:

• DHCP and TFTP implementations can have bugs

• Different firmwares can have different bugs

• Fixing one firmware doesn't fix the others

• At scale, a small fraction of errors can translate to a lot of operations

Boot process issues



• LinuxBoot can simplify provisioning a lot

• Tested DHCP/TFTP implementations

• Better protocols: HTTPS instead of TFTP

• Consistent firmwares everywhere

• We know and control what that we run

LinuxBoot in provisioning



• Testing and upgrading firmware now depends on vendors

• Different vendors have different standards and response time

• Vendors may be unable to reproduce the issue on their infra

• On our side:

• Debugging closed source firmware can be hard

• Once the update is ready, we run our validation

• Rinse and repeat

• The time between bug identification and roll-out to prod can be very long

• We want to speed this process up, and enable in-house debugging

• LinuxBoot allows us to do this

Firmware testing and upgrades



• LinuxBoot is not just for firmwares

• Its components can be successfully used as a bootloader or an OS 

installer

• We want to boot the infra with the same code that provisions our infra

• Facebook is experimenting systemboot as:

• Local bootloader and installer: ProvLauncher

• Network installer: YARD

Not just firmware: LinuxBoot as OS installer



LinuxBoot architecture @ FB



Multiple open-source components:

• coreboot: low-level hardware initialization

• Linux: device drivers, network stack, multiuser/multitask 

environment, etc

• u-root: user-space environment with command-line utilities

• systemboot: additional tools, and bootloader "personality"

coreboot, LinuxBoot, u-root, systemboot?

Architecture



Think of it like busybox, but written in Go

• Multi-architecture

• Single binary, all the tools built-in, symlink determines what to run

• Alternatively, source mode: modify and recompile on the fly

• Fast build time: <10s on a modern laptop

• Created at Google; contributors from Facebook, 9elements, and 

several others

u-root
User-space initramfs written in Go



• systemboot is a "distro" that implements a bootloader

• Based on u-root, also written in Go

We want components that provide flexibility in various boot 

scenarios, and that we can iterate fast on

A bootloader distribution based on u-root

systemboot



• Look for boot entries in VPD vars: Boot0000, Boot0001, ...

• Find a Booter for the boot entry, and try it

• If it fails, try the next boot entry, until one succeeds

• If all fails, start over

systemboot workflow



• Boot entries and their order are stored in VPD variables

• Value in JSON format. Example:

• Boot0000={

"type":"netboot",

"method":"dhcpv6",

"mac":"00:fa:ce:b0:0c:00"

}

Boot entries

• Boot0002={

"type": "localboot",

"kernel": "/path/to/kernel",

"device_guid": "….",

}



• Use the u-root ramfs builder and a valid kernel:

go get –u github.com/u-root/u-root

go get –u github.com/systemboot/systemboot/{uinit,localboot,netboot}

"${GOPATH}/bin/u-root –build=bb core \

github.com/systemboot/systemboot/{uinit,localboot,netboot}

• Try it!

qemu-system-x86_64 -nographic -kernel /path/to/your/kernel \

-initramfs /tmp/initramfs.linux_arm64.cpio

Building systemboot



Can be used to

• Implement new boot methods

• e.g. “brute-force” bootloader

• Define new boot policies

• e.g. fail if signature is bad; or continue and leave it to remote attestation

• Implementation:

• Define JSON structure and custom Boot() method

Booter interface



https://github.com/systemboot/systemboot/blob/master/pkg/booter/netbooter.go

type NetBooter struct {

Type string `json:"type"`

Method string `json:"method"`

MAC string `json:"mac"`

OverrideURL string `json:"override_url,omitempty"`

}

Example: netbooter

https://github.com/systemboot/systemboot/blob/master/pkg/booter/netbooter.go


func (nb *NetBooter) Boot() error {

bootcmd := []string{"netboot", "-d", "-userclass", "linuxboot"}

cmd := exec.Command(bootcmd[0], bootcmd[1:]...)

cmd.Stdin, cmd.Stdout, cmd.Stderr = os.Stdin, os.Stdout, os.Stderr

if err := cmd.Run(); err != nil {

return fmt.Errorf("Error executing %v: %v", cmd, err)

}

return nil

}

Example: netbooter



Systemboot demo



Additional resources:
• linuxboot.org
• u-root.tk
• systemboot.org

Thanks!

Questions?

• tpmtool.org
• opencompute.org
• telecominfraproject.com

David Hendricks <dhendrix@fb.com>

Andrea Barberio <barberio@fb.com>


